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Abstract 
Background: Data integration is a crucial task in the biomedical domain and integrating data 
sources is one approach to integrating data. Data elements (DEs) in particular play an 
important role in data integration. We combine schema- and instance-based approaches to 
mapping DEs to terminological resources in order to facilitate data sources integration. 
Methods: We extracted DEs from eleven disparate biomedical sources. We compared these 
DEs to concepts and/or terms in biomedical controlled vocabularies and to reference DEs. We 
also exploited DE values to disambiguate underspecified DEs and to identify additional 
mappings. Results: 82.5% of the 474 DEs studied are mapped to entries of a terminological 
resource and 74.7% of the whole set can be associated with reference DEs. Only 6.6% of the 
DEs had values that could be semantically typed. Conclusion: Our study suggests that the 
integration of biomedical sources can be achieved automatically with limited precision and 
largely facilitated by mapping DEs to terminological resources. 

Background 
Introduction 
The interpretation of experimental data generally requires physicians and biologists to 
compare their clinical and biological data to already existing data sets and to reference 
knowledge bases. For example, starting from a gene involved in a pathological condition, 
users may want to obtain information about this disease (e.g., manifestations, genes involved) 
and about the gene (e.g., sequence, polymorphism, pathways). This kind of information is 
often present in electronic biomedical resources available through the Internet. However, 
collecting information manually is slow and error-prone, which is essentially incompatible 
with high-throughput analyses. The integration of biomedical resources has been proposed as 
a solution to facilitate access to multiple, heterogeneous resources [1,2]. Most biomedical 
systems have been developed independently of each other and do not have a common 
structure or even a shared data dictionary. In practice, the major barriers to data sources 
integration are the heterogeneity of database schemas and the disparity of data elements 
across systems. Data elements (DEs) can be defined as a basic unit of information, also called 
attribute in database parlance, and which is built on standard structures having a unique 
meaning and distinct units or values, also called instances in databases [3]. Examples of DEs 
in the biomedical domain include Gene Symbol and Pathology Name. The DEs extracted from 
various resources tend to be heterogeneous. In fact, each source has its own way of naming 
the DEs it uses. For instance, a DE for pathological conditions will be named Disorders in one 

Accepted for publication in the BMC Bioinformatics
draft material -- please do not cite



draft
 - 2 - 

source, but Disease in another. In these cases, lexical approaches to integrating DEs across 
data sources are therefore likely to perform suboptimally. Additionally, in some sources, DEs 
are ambiguous because they may acquire part of their meaning from the context. For example, 
the DE Name may refer to gene or protein names. In contrast, other sources use fully specified 
names for their DEs, e.g., Protein Name. The issue here is that Name in protein context cannot 
be mapped automatically to Protein Name (fully specified). Conversely, two DEs Name in gene 
and protein contexts respectively must not be mapped. 
The following scenario illustrates how integrating DEs facilitates the integration of 
biomedical sources. We want to help a biologist interested in the interactions of a given 
protein to query distributed sources seamlessly. To this end, the query term interaction has to 
be mapped to DEs of distinct sources: to Interactions in HPRD [4], to Interactant in Entrez 
Gene [5], and to Ligand Interaction in PDB [6]. From these resources, biologists can gain 
information about protein interactions in HRPD, find cross-references in Entrez Gene not only 
to the literature, but also to other specialized resources, such as BIND [7], and visualize 
chemical interactions in PDB. 
The first objective of this study is to compare the DEs extracted from biomedical electronic 
resources to concepts and/or terms of biomedical controlled vocabularies on the one hand and 
to the DEs defined by the National Cancer Institute on the other. This approach should help 
resolve heterogeneity existing between DEs. Additionally, as some DEs are ambiguous or 
underspecified, we use the values associated with such DEs to identify indirect mappings to 
terminological resources. Our hypothesis is that we will be able to integrate DEs from 
heterogeneous sources by linking them to controlled terminologies, when they are not already 
present in reference DE repositories. The set of DEs under investigation was extracted from 
eleven biomedical data sources covering genes, proteins and diseases.  

Related Work 
The general framework of our study is that of data source integration through schema 
matching. Integration issues have been largely studied over the past years, with a particular 
emphasis on mapping schemas of heterogeneous data sources. This process takes as input two 
sets of elements (attributes or DEs, values, etc) constituting two schemas and determines the 
relations (equivalence, subsumption, etc) existing between pairs of elements across schemas. 
Various approaches have been developed and categorized according to distinct criteria. A 
brief overview of these methods is presented below. For a detailed survey of such approaches, 
the interested reader is referred to [8,9]. 
The main difference between these methods concerns the level at which they are applied. 
More precisely, some approaches are situated at schema level whereas others lie at instance 
level. Schema-based approaches only exploit information existing in the schema of the 
sources, while instance-based approaches exploit information situated at the instance level, 
i.e., the values associated with the DEs. At both schema and instance levels, two main groups 
of methods are used for the mapping: lexical and structural methods. 
Schema-based approaches. Lexical methods have been proposed to map DE labels by 
exploiting their morphology. For example, a short edit distance or a high proportion of 
common n-grams between two strings is indicative of lexical resemblance. Others consider 
DE labels as terms and use external resources to identify linguistic relations (e.g. synonymy) 
between them. With structural methods, the idea is for example to consider schemas as graphs 
and to apply classical approaches for comparing graphs, such as determining similarity 
between nodes sharing common ancestors and descendants [10].  
Instance-based approaches. The information available about schemas is sometimes 
insufficient or ambiguous, and it can be useful to exploit information situated at the instance 
level. Lexical methods can be used here too, for example, mapping instance values to external 
resources. In practice, external resources can help identify synonymy between values of 
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attributes. Structural techniques can also be applied at this level where information can be 
obtained about constraints existing on attributes by identifying for example the range of their 
associated values in case of numerical data or recurring terms for textual data.  
Examples of data source integration systems. The different kinds of methods (lexical and 
structural) and levels at which they are applied (schema and instance) are generally more 
powerful when used in combination. The system GLUE [11] provides a semi-automatic 
method for mapping schemas of heterogeneous sources. It combines machine learning 
techniques applied at the instance level with structural methods situated at schema level and 
which exploit the neighbourhood of attributes to determine the best mappings existing 
between elements of two schemas. Also of interest, [12] focuses on an instance-based 
approach and uses a domain ontology to identify indirect mappings between attributes 
through external knowledge, as described above. This approach is automatic but the problem 
is that it requires a fully specified domain ontology (with concepts well-labelled and 
associated instances), which represents a significant limitation. 
The methods used in our study are traditional in the sense that we mostly apply lexical 
approaches to schema- and instance-based approaches, also taking advantage of external 
resources. Rather than to propose new methods, the contribution of this paper is to evaluate 
the applicability of existing approaches to the automatic mapping of DEs from the perspective 
of integrating biomedical data sources in a high-throughput context. 

Material and methods 
Data elements 
Origin. Our test set consists of DEs extracted from eleven Web-accessible biomedical 
sources, selected to be representative of the different kinds of resources found in the 
biomedical domain. Some of them contain information about genes: GeneCards [13], Entrez 
Gene, Geneloc [14], Genew (the HGNC [15] database), and HGMD [16], others about 
proteins: Swiss-Prot [17], PDB, HPRD, Interpro [18] or diseases: OMIM [19]. Our 
application is not targeted to a particular model organism so we also included MGI [20], 
which provides various kinds of information about mice. 
Extracting data elements 
Creating a set of terms for querying sources. In order to query the various data sources 
mentioned above, we first established a list of query terms, namely gene and disease names. 
To this end, we exploited a reference resource in the domain of medical genetics: the Genetics 
Home Reference [21] (GHR). GHR provides information about genetic conditions and genes 
involved in these conditions. Using the Web interface to GHR, a bioinformatician (FM) 
manually constituted a text file containing gene symbols (e.g. HFE) and associated disease 
names (e.g. hemochromatosis), if any. A sample of one hundred terms randomly extracted 
from this file constitutes the set of terms we used for querying DE sources. 
Acquiring DEs. The sources used in this study are Web-interfaces to biological databases, 
automatically generated by program. Therefore, it is expected that most pages of a given 
source share a common organization and presentation. We take advantage of this feature for 
identifying recurring terms throughout Web pages, which, we hypothesize, correspond to 
DEs. In practice, we developed a program for querying systematically the eleven sources 
through their query URL. For each source, a set of 100 HTML pages corresponding to entries 
of the set of biomedical terms is created. After eliminating the header and footer, the elements 
common to at least 75% of the HTML pages are extracted automatically. This selection 
results in eliminating specific information (e.g., a given gene name), while keeping general 
information (e.g., the term “Gene Name”) [22]. An example of DE extracted from the source 
Genew is given in Figure 1. For instance, the terms “Approved Symbol” and “Approved 
Name” appear on all three pages and are therefore identified as candidate DEs.  
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Terminological resources 
A biomedical controlled terminology: the UMLS. We chose the Unified Medical Language 
System® (UMLS®) [23], a biomedical terminology integration system, because it provides a 
wide coverage of the biomedical domain, including terminologies for specialized clinical 
disciplines, the biomedical literature, and genome annotations. The UMLS consists of three 
major components. The UMLS Metathesaurus is assembled by integrating more than 100 
sources vocabularies. It contains about 1.2 million concepts (clusters of synonymous terms) 
and more than 22 million relationships between these concepts. The UMLS Semantic 
Network is a limited network of 135 semantic types. Each Metathesaurus concept is assigned 
to at least one semantic type. Finally, the Lexical Resources comprise the SPECIALIST 
Lexicon and Lexical Tools [24]. The UMLSKS Developer's API also provides various 
methods for identifying Metathesaurus concepts from input terms (exact and normalized 
match). Additionally, the MetaMap Transfer (MMTx) program maps text to concepts in the 
Metathesaurus with additional flexibility (approximate match) [25]. The 2005AA version of 
the UMLS is used in this study.  
A biomedical collection of data elements: the NCI caDSR. The National Cancer Institute 
(NCI) has created a Cancer Data Standards Registry (caDSR) [26] as part of the caCORE, a 
common infrastructure for cancer informatics [27]. Its main goal is to define a comprehensive 
set of standardized metadata descriptors for cancer research terminology used in information 
collection and analysis. Various NCI offices and partner organizations have developed the 
content of the caDSR by registration of DEs based on data standards, data collection forms, 
databases, clinical applications, data exchange formats, UML models, and vocabularies. 
Using the ISO/IEC 11179 [28] model for metadata registration, information about names, 
definitions, permissible values, and semantic concepts for common data elements (CDEs) 
have been recorded. In this study, we used the version 3.0.1.2 of the NCI caDSR, which 
comprises some 13,000 CDEs. 

Method 
Our method can be summarized as follows. Starting from the DEs automatically extracted 
from eleven Web resources, we first attempt to find a direct correspondence between our DEs 
and biomedical terms in the UMLS on the one hand and existing CDEs in the NCI caDSR on 
the other. Alternatively, we map the values corresponding to our DEs to the UMLS and 
expect to determine the type of the DE using the semantic types of the terms corresponding to 
the DE values. More formally, we first apply lexical methods in order to map DEs extracted 
from distinct sources to common vocabularies by exploiting the schema level. We then apply 
lexical methods at the instance level and we use external resources to enhance, filter and 
precise DE mappings.  
Direct mapping of data elements to terminological resources 
Mapping to the UMLS Metathesaurus. Our approach to mapping DEs to UMLS concepts is 
as conservative as possible. We first attempt to find an exact match. If none is found, a match 
is attempted after normalization. In practice, this process makes the input and target terms 
potentially compatible by eliminating such inessential differences as inflection, case, 
underscore and hyphen variations, as well as word-order variation [24]. These two steps are 
implemented by the corresponding methods of the UMLSKS API. Finally, an approximate 
match is attempted using MMTx (strict model). The mapping procedure is fully automated 
and stops as soon as a match is found. The output of the mapping consists of the list of 
Metathesaurus concepts corresponding to each DE, along with their semantic types.  
Mapping to the NCI caDSR. The procedure used to map DEs to the caDSR is somewhat 
similar to the mapping to the UMLS. The major difference is that we used a local copy of the 
caDSR instead of the tools provided by the NCI. This gives us additional control over the 
mapping process. The caDSR repository consists in twelve fields. Half of them contain 
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numbers and other data types unlikely to map to DEs, e.g. CDE identifiers such as 
“2178687”. Four other fields are incomplete or contain information in natural language (such 
as a CDE definition “The name of the gene”), they are thus difficult to exploit. In practice, out 
of the twelve fields in a caDSR record, only two are of interest for our purpose: “Long Name” 
and “Preferred Name”. The corresponding values of these two fields for the CDE “Gene 
Name” are “GeneName” and “Name”, respectively. We rendered input terms and caDSR 
CDEs compatible by removing spaces in multi-word terms in order to match the naming 
conventions in the caDSR. We first try to map exactly each DE against the Preferred Names 
of the caDSR. In case of failure, we attempt an exact match to the Long Names of the caDSR 
CDEs. Additionally, we split each multi-word DE not yet mapped to the caDSR and attempt 
an exact match against the Preferred Names of the CDEs, followed by an approximate match. 
Finally, we attempt to map exactly the isolated words from DEs to the Long Names of the 
caDSR CDEs. This process is also fully automated and results in a list of DEs associated with 
the Long Name or Preferred Name of the mapped CDE(s). 
Indirect mapping of data elements through their values. The approaches presented in the 
previous section are efficient to associate DEs with lexically similar entries in the 
terminological resources, but they are limited to those cases where lexically similar terms 
exist on both sides. The alternative approach proposed here consists in mapping not the DEs, 
but the values associated with them to terminological resources. This indirect mapping is 
attempted for all DEs because the objective of the proposed approach is twofold: On the one 
hand, to identify mappings for those DEs for which no match in the UMLS or caDSR can be 
found; on the other, to filter out potential inappropriate mappings obtained through the UMLS 
or the caDSR. For instance, the DE Approved Name in Genew will be mapped to the DE 
Protein Name in SwissProt because they share the word “Name”. This is incorrect because 
Approved Name actually refers to gene, not protein names. In practice, it is expected that the 
DEs will be found among the high-level categories characterizing their corresponding values. 
For example, values associated with the DE Approved Name include “tenascin XB”, and 
“breast cancer 1, early onset” (see Fig. 1), categorized as Gene or Genome. 
Acquiring DE values. We first created a program to automatically query each source and 
recovered the values associated with each DE identified in this source. We extracted 
automatically up to 100 values corresponding to each DE by querying the sources for each 
biomedical term of the set constituted as described in the paragraph Acquiring DEs of 
subsection Data elements. For example, the values associated with Function include “protein 
binding” and “enzyme regulator activity”. In some cases, no value could be extracted for a 
given DE in a given source. 
Mapping DE values to the UMLS. We used the automated methods described in the 
paragraph Mapping to the UMLS Metathesaurus above for mapping DE values to UMLS 
concepts, with the difference that only exact and normalized matches were used here. For 
example, protein binding was mapped to the concept “Protein Binding” (C0033618), 
categorized by the semantic type Molecular Function. 
Extracting DE candidates. We used the semantic type(s) of the UMLS concepts resulting 
from the mapping of the values of a given DE to determine the type of this DE. More 
precisely, we selected the semantic type categorizing the majority of the concepts for a given 
set of values. For instance, in the example introduced previously, we are able to determine 
that the DE Approved Name relates to gene names since the majority of its values were 
categorized by the semantic type Gene or Genome (see Fig. 2.a). 
Default indirect mapping through data element values and heuristics. When the previous 
process could not determine the type of a DE, we attempted to assign coarser predefined 
types. We first isolated DEs containing specific terms. For instance, when the terms “ID(s)” 
or “identifier” were found, the corresponding DE was typed as Identifier. Then, we analyzed 
the values characterwise and assigned the type Sequence to the DE when each of its non-
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empty values was a series of “A”, “G”, “C”, and “T”. Finally, the remaining DEs were typed 
as Integer or String according to their values. An example of the exploitation of DE values 
through heuristics is shown in Figure 2.b. 
This indirect mapping associates a type with the DEs, which is often useful for 
disambiguating underspecified DEs and for filtering out potentially inappropriate mappings 
obtained by direct mapping to terminological resources. Additional mappings can also be 
identified by exploiting the type associated with DE values, when the DE itself cannot be 
found in existing terminological resources. 

Results 
Disparity of DEs 
474 distinct DEs (548 tokens) were extracted from the eleven selected sources, of which 47 
appear in more than one source (ignoring case differences). The most frequent DEs are Name 
and Symbol, which appear each in six different sources. 

Direct mapping of data elements to terminological resources 
For both UMLS and caDSR, we obtained different kinds of mappings. Indeed, as a DE 
consists of a word or a set of words, the cardinality of the mappings is either 1-1 (one DE to 
one UMLS concept/caDSR CDE) or 1-n (one DE to many UMLS concepts/caDSR CDEs). 
Mapping to the UMLS Metathesaurus. 391 DEs (82.5% of all distinct DEs in our set) were 
mapped to 479 distinct concepts of the UMLS Metathesaurus. Table 1 shows the number of 
DEs mapped during each step, along with the numbers of the concepts mapped to these DEs. 
In addition, we give two examples of DEs for the different cases. Each mapping was reviewed 
manually by the first author. The validity of the mappings to the UMLS is nearly 66%. 
Incorrect mappings occur when general terms are given a biomedical interpretation. For 
instance, the DE external links is mapped to the UMLS concept “Link” (C0208973), which is 
a Pharmacologic Substance. In fact, the DE refers to “link” in a computer-science meaning, 
i.e. a cross-reference. Other errors are due to the ambiguity of abbreviations, a classical issue 
in mapping. For example, the DE previous GC identifiers is mapped to the concept “GC Gene” 
(C1367452), while GC stands, in fact, for GeneCards. We also considered the repartition in 
terms of semantic types of the results obtained by our method (Table 2). This gives us an idea 
of what kind of information DEs represent. Not surprisingly, the semantic type under which 
many concepts are categorized is Intellectual Product, corresponding to generic concepts such 
as Synonyms, Nomenclature, and database. The semantic categorization of the DEs also helps 
assess the quality of the mapping (e.g., mappings of DEs to medical devices would be 
suspicious). 
Mapping to the NCI caDSR. 354 DEs (74.7% of all distinct DEs in our set) were mapped to 
2,735 distinct DEs of the caDSR (Table 3). By exact match to the Preferred Names, we 
obtained 10 correct mappings, such as gene function. Exact match to the Long Names resulted 
in mapping 22 DEs to 285 caDSR CDEs. Some mappings were correct, e.g. Location which 
mapped uniquely to “MapLocation”, but others were not useful in practice, such as Description 
which mapped to 23 distinct CDEs. After splitting multi-word DEs, ten mappings were 
identified by exact match to the Preferred Names, but resulted in partial matches. For 
instance, the DE other accession ids was only mapped to the caDSR CDE “other”, which is 
incomplete and thus irrelevant. Approximate match to the Preferred Names resulted in the 
mapping of 273 DEs to 2,467 distinct caDSR CDEs. For example, the DE Name was 
approximately mapped to 374 distinct caDSR CDEs through the Preferred Names field. On 
the other hand, the approximate match to the Long Names resulted in 39 DEs mapped to 218 
distinct caDSR CDEs. We did not evaluate the mappings resulting from approximate matches 
because of the large number of caDSR CDEs associated with each DE in these cases. 
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Indirect mapping of data elements through their values and default mapping through 
heuristics  
We analyzed the whole set of DEs. Interestingly, this method enables us to identify as distinct 
those lexically identical DEs whose associated value sets are different. 
Overall, only 62 DEs (11.3% of all DEs in our set) could be characterized with datatypes 
more specific than String. 36 DEs were categorized by UMLS semantic types and three 
categories of proposed mappings were identified: 
- Correct (11). An example is the DE Previous symbols, extracted from the source Genew. 

90% of its 46 non-empty values were categorized by the semantic type Gene or Genome. 
We were thus able to determine that the Previous symbols DE in the context of the Genew 
source corresponds to previous gene symbols. Other examples include Function and 
Component, extracted from MGI, whose values are categorized by the semantic types 
Molecular Function and Cell Component, respectively. 

- Ambiguous (21). For instance, the DE Name, extracted from the source Entrez Gene, is 
mapped to the semantic types Gene or Genome and Amino Acid, Peptide, or Protein, 
reflecting ambiguity in the UMLS. In other words, many values associated with the DE 
Name indeed correspond to both genes and proteins. For example, the value “BRCA1” 
maps (by exact match through synonyms) to both a protein name (BRCA1 Protein - 
C0259275) and a gene name (BRCA1 Gene - C0376571). 

- Erroneous (4). Some terms were wrongly extracted from the sources. For example, Not 

applicable is extracted from the source GeneCards because it is present in many pages, but 
does not correspond to a DE. 

The remaining DEs (26) were accurately assigned to the coarser types Integer, Identifier, and 
Sequence. Examples include: 
- Integer: Molecular Weight, a DE extracted from SwissProt whose values include 207721 

and 464456 (in Dalton) for BRCA1 and TNXB genes, respectively. 
- Identifier: Accession Numbers, a DE extracted from Genew whose values include U14680 

and X71923 (GenBank identifiers) for BRCA1 and TNXB genes, respectively. 
- Sequence: an illustration of Primer 1 extracted from GeneLoc is given in Figure 2.b. 
Table 4 shows the number of DEs associated with the various datatypes. 

Examples 
We present here two examples illustrating the whole mapping process: results obtained by 
direct and indirect approaches are displayed. The two DEs we have chosen are From extracted 
from the source SwissProt and RT-PCR obtained from MGI. 
Direct mapping 
UMLS Metathesaurus. The DE From is not found in the UMLS whereas the abbreviation RT-

PCR maps unambiguously (by exact match through a synonym) to the concept “Reverse 
Transcriptase Polymerase Chain Reaction” (C0599161). 
NCI caDSR. Both DEs are found through an approximate match to the field Preferred Name. 
The DE From results in eight CDEs, such as “ExternalReferenceExportedFromS”. RT-PCR 
maps to three CDEs including RT-PCR_RESULT_PROC, which corresponds to the results 
obtained by the RT-PCR procedure. None of the mappings obtained through approximate 
match are accurate. 
Indirect mapping 
Semantic types. 94 non empty values are retrieved from the DE From, including “Rattus 
norvegicus”, “Zebrafish”, and “Homo sapiens”. Among those, 47.9% are categorized by 
Mammal and 11.7% by Fish (and 100% by the more general semantic type Organism), thus 
indicating that this DE refers to organisms. Therefore, we can identify an indirect mapping to 
the DEs Organism present in Entrez Gene and GeneCards. 
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Heuristics. The indirect mapping of RT-PCR requires the use of heuristics. The values of this 
DE are digits, which corresponds to the number of RT-PCRs realized on the gene whose 
information Web page is displayed on MGI Web site. The associated type is thus Integer. 

Discussion 
Findings 
Direct mapping. Intuitively, mapping to a reference DE repository represents the best 
possible data integration approach. This intuition was confirmed in part by this study as 
illustrated by the following example. The DE Gene Name exists in the caDSR, where it is 
related to the more generic CDE “Gene”. In our experience, however, beside a limited number 
of such mappings (only 10 are deemed correct), this approach was rather ineffective because 
most of our DEs could not be found in the caDSR. Moreover, the approximate matching often 
yielded too many candidates to be useful in an automated environment. In contrast, the 
mapping of DEs to the UMLS turned out to yield the majority of the mappings. The broad 
coverage provided by the UMLS Metathesaurus explains the large number of exact matches. 
Approximate matches, while useful for guiding the mapping, are of limited interest in an 
automated environment. For example, there is no exact or normalized match in the UMLS for 
the DE Gene Name and this DE is mapped to the two concepts “Gene” and “Name”. The 
mapping to “Name” is too generic and would result in ambiguity with other DEs such as 
Protein Name. Analogously, Gene Name and Gene Symbol cannot be easily differentiated if the 
mapping to “Gene” is selected. 
Indirect mapping. Because our method selects the semantic type common to most values for 
a given DE, it achieves a semantic typing of the DEs rather than a real mapping. In fact, the 
direct and indirect mappings of DEs are complementary. Direct mapping identifies a direct 
correspondence between DEs through existing terminological resources, whereas indirect 
mapping is useful for disambiguating mappings. As illustrated before, we were able to 
indicate that the DE Approved Name is to be understood in the context of genes (i.e., gene 
name) and that the DE From represents the organisms in which a protein is expressed. 
However, overall, only 6.6% of our DEs could be semantically typed by this method. 
Partially automated mapping. The purpose of semantic mining is to identify and 
characterize the relations among entities of interest in a given domain. Because biomedical 
knowledge is scattered across many heterogeneous databases, data integration is often used in 
semantic mining applications. Moreover, semantic mining techniques are usually applied in 
high-throughput environments, where manual data integration is impractical. Our results 
suggest that data integration can be achieved automatically with limited precision and largely 
facilitated by mapping DEs to terminological resources. Our approach exploits both schema 
and instance levels for aligning schema sources, which is not new in itself. However, this 
study illustrates concretely the benefit of automating the mapping process for biomedical 
sources integration, in contrast to integration systems that are designed and maintained mostly 
manually. The methods presented in this paper would support the partial automation of some 
tasks related to the conception and evolution of integration systems. Indeed, our approach 
contains the ingredients of a mediator-based system [29]: information about sources (we 
extract DEs for that), a global schema (which can be represented using terminological 
resources, such as the UMLS), and finally mappings between elements of the global schema 
and source schemas (we present here methods for mapping DEs to entries of terminological 
resources). 
Limitations and future directions 
Evaluation. In this exploratory study, the validity of the mappings was evaluated by one 
person only (FM). An independent evaluation would be required to confirm our results. 
General lexical resources. Among the DEs that failed to be mapped to the UMLS and caDSR 
are general terms such as Pathways, Ontologies, keywords, domain, and features. Mapping to 
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general rather than specialized resources is expected to compensate for this limitation. We 
plan to add WordNet [30], the electronic lexical database of general English, to our list of 
target terminological resources. We would like to evaluate the potential benefit of using 
general lexical resources to increase the coverage of non-domain-specific DEs, even if we are 
aware that using such resources will likely result in increased ambiguity for some DEs.. 
Patterns and rules. The heuristics currently used for analyzing the DE values only identify a 
limited number of datatypes. Pattern detection could be used to enrich some datatypes with 
semantic information. For example, a pattern for identifying bibliographic references would 
allow us to relate the DEs Primary Citation in PDB and Publications in InterPro. Analogously, 
rules could be used to combine multiple direct mappings. For example, a composite concept 
“Gene name” could be created from the mapping of the DE Gene name to the two UMLS 
concepts “Gene” and “Name”. 

Conclusion 
The aim of our study was to consider the integration of biomedical sources through the use of 
DEs. We extracted a set of DEs from disparate biomedical sources available on the Internet. 
We then demonstrated the benefit of using terminological resources to reconcile 
heterogeneous DEs. Terminological resources were useful from a lexical perspective, 
enabling to map DEs to a common vocabulary. In addition, from a semantic perspective, 
terminological resources supported the categorization of DE values, enabling us to 
disambiguate underspecified DEs. 
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Figures 
Figure 1 - Example of the three Genew Web pages for the TNXB, HFE, and BRCA1 
genes. 

 
Examples of data elements are encircled (Approved Symbol, Approved Name) 

Figure 2 - Examples of the exploitation of the values of two data elements: 
(a) using the UMLS as a terminological resource, (b) using heuristics 
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Tables 
Table 1: Mapping steps of data elements in the UMLS Metathesaurus 

Step Number of mapped DEs / 
associated UMLS concepts Data element UMLS concept(s) 

Exact match 139 / 204 
Molecular Weight 

Northern Blot 

Molecular Weight (C0026385) 
Northern Blot (C1148548) 

Normalized 
match 20 / 23 

cellular component 

molecular function 

cellular_component (C1166607) 
molecular_function (C1148560) 

Approximate 
match 
(MMTx) 

232 / 333 
Gene Symbol  

 

mrna sequence 

Genes (C0017337) 
Symbol (C0679214) 
RNA, Messenger (C00035696) 

Table 2: Repartition of the data elements under UMLS semantic types 
Number of mapped 

concepts Semantic type Example of data 
element 

Example of proposed 
concepts 

37 Intellectual Product Gene Name Names (C0027365) 

34 Body Part, Organ, or 
Organ Component biological process Biological process (C1184743) 

26 Functional Concept skeletal muscle 
Entire skeletal muscle (organ) 
(C1280260) 

25 Qualitative Concept gross insertions &  
duplications Duplication (C0332597) 

19 Spatial Concept site of expression Site (C0205145) 

17 Neoplastic Process malignant neoplasms malignant neoplasms (C0006826) 

17 Quantitative Concept sensitivity Statistical sensitivity (C0036667) 

16 Pharmacologic 
Substance 

average numbers of 
overlapping amino acids 

Amino Acids (C0002520) 

14 Body System immune system immune system (C0020962) 

14 Disease or Syndrome disorders & mutations Disease (C0012634) 

Table 3: Results of the direct mapping of data elements to the NCI caDSR 
Step DEs CDEs Examples of DEs mapped to CDE(s) 

Exact match of DEs to PN 10 10 Correct : gene function to “GeneFunction” 
Exact match of DEs to LN 22 285 Correct : Location to “MapLocation” 

Not useful : Description to 23 CDEs (e.g. 
“ContextDescription” and “GeneAliasDescription”) 

Exact match of split DEs to PN 10 10 Partial : other accession ids to “other” 
Approximate match of split 
DEs to PN 

273 2,467 Not useful : Name to 218 CDEs (e.g. 
“ApprovedStatusName” and “OTHER_DZ_SITE_NAME”) 

Approximate match of split 
DEs to LN 

39 218 Not useful : Component to 26 CDEs (e.g. “Protein 
Component” and “Blood Component Transfusion Date”) 

PN: Preferred Name, LN: Long Name, CDEs: common data elements 

Table 4: Results of the indirect mapping through data element values and heuristics 
Type Number of DEs having this type Examples of typed DEs 

Semantic type  36     (6.6%) Previous symbols (Gene or Genome)
Integer  18     (3.3%) product size 
Identifier  6       (1.1%) PubMed IDs 
Sequence  2       (0.3%) Primer 2 
String  412   (86.9%) Animal model 
 


